107. (Julio 2020) Música y entropía - I
Imprimir
Escrito por Paco Gómez Martín (Universidad Politécnica de Madrid)   
Martes 14 de Julio de 2020

Inauguramos una serie en la que vamos a examinar el concepto de entropía y su aplicación en el análisis musical. A primera vista, no parece que ambos conceptos tengan mucha relación entre sí o si la tienen que sea una relación directa. Además, hay varios conceptos de entropía. En Mecánica Estadística, entropía se refiere al número de configuraciones microscópicas que son consistentes con las cantidades macroscópicas que caracterizan un sistema, tales como el volumen, la presión o la temperatura (véase [Wik]). Esta entropía, llamada entropía termodinámica, está definida de manera que se puede interpretar como una medida del desorden interno del sistema y cuanto mayor es el valor de la entropía, mayor es el desorden del sistema. La segunda ley de la termodinámica establece que en un sistema aislado la entropía nunca decrece y que esta tiende a su máximo valor posible (máximo desorden del sistema). Más tarde, Shannon, en un artículo pionero [Sha10] A Mathematical Theory of Communication, tomó las ideas principales encerradas en el concepto físico de la entropía y las aplicó a la Teoría de la Información. Definió la entropía como la cantidad de información asociada a un mensaje en base a la sorpresa o novedad contenida en los símbolos de ese mensaje. Tal y como pasaba con la entropía termodinámica, la entropía de la teoría de la información está descrita en términos de distribución de probabilidades.

Formalmente, la entropía de Shannon se define a partir de un conjunto de símbolos, xi, cada uno con probabilidad de aparición igual a P(xi), donde i = 1,,n. Las parejas (xi,P(xi)) forman la distribución X de probabilidad de ese conjunto de símbolos. La fórmula matemática de la entropía de Shannon es

          ∑nH (X ) = -   P (xi)log2(P (xi))          i=1

En la práctica las probabilidades de los símbolos se obtienen observando la transmisión de los mismos. Cuando se aplican estas ideas al análisis musical, en primer lugar se interpreta la propia música como un conjunto de símbolos. Si queremos hallar la entropía de las alturas de sonido, entonces el conjunto de símbolos son las 12 alturas (si se consideran clases de alturas; en otro caso, cada altura es un símbolo distinto). Las probabilidades de dichas alturas (símbolos) se calculan a partir de las frecuencias de aparición en una pieza concreta o en general en un corpus musical.

Esta famosa fórmula establece que la máxima cantidad de información contenida en mensajes escritos con los símbolos xi ocurre cuando cada símbolo tiene probabilidad 1∕n. Esta fórmula se puede interpretar como la esperanza de -log 2(X). La variable aleatoria -log 2(X) recibe el nombre de cantidad de información de X. Además, la entropía representa un límite absoluto de la capacidad de codificar un mensaje sin pérdidas en un canal sin ruido, resultado que es importante en teoría de la información.

Tras esta breve definición de entropía, surge la pregunta de cómo se relaciona la entropía con la música y su análisis. La música es un fenómeno complejo y altamente estructurado. Desde el principio, músicos y musicólogos buscaron afanosamente conceptualizar, detectar, medir e interpretar esa complejidad. Asociada a la cuestión del estudio de la complejidad musical está una cuestión muy cercana: cómo se genera el significado en la música. De hecho, una cuestión aun más básica, y que todavía está bajo intenso estudio, es la de definir qué es el significado musical (véanse [Mey56Bro00Coo01AaQ17Chu19] y sus referencias). Muchos investigadores pensaron que la complejidad de la música estaba entroncada con su capacidad para generar significado. Meyer, en su famoso libro del año 56, Emotion and Meaning in Music [Mey56], afirma que el significado musical proviene de la capacidad de que un suceso musical implique otro suceso musical. He aquí sus palabras textuales:

Musical meaning arises when an antecedent situation, requiring an estimate as to the probable modes of pattern continuation, produces uncertainty as to the temporal- tonal nature of the expected consequent. (Meyer, 1957, p. 416)

Esta teoría supone que los sucesos musicales transcurren en base a un argumento musical cuya lógica encadena dichos sucesos uno tras otro. La mayor o menor sorpresa del argumento musical es proporcional al interés musical que despierta la pieza. Meyer ofrece, pues, una teoría en que explica la emoción musical en base a la creación y satisfacción de expectativas musicales. Obsérvese que Meyer asume una definición de significado musical en que lo extra-musical tiene poca importancia, esto es, el significado se genera a partir de los hechos meramente musicales. Otras teorías acuden, en cambio, a paralelismos con el lenguaje para explicar el significado musical.

En un artículo publicado un año después que su libro, Meaning in music and information theory, [Mey57], Meyer ya formula su teoría del significado musical en términos de teoría de la información. En particular, afirma que “dado un antecedente musical, este induce una estimación de la probabilidad de las formas de continuación en el oyente” (página 416). Esta idea pronto atrajo la atención de muchos investigadores, quienes propusieron modelos de todo tipo para explicar la generación de significado musical. Por citar los principales modelos, tenemos Jackendoff y Lerdahl [LJ83] y su teoría generativa de la música tonal, el modelo de implicación-realization de Narmour [Nar90], el modelo de sistema y contraste de Bimbo y sus colaboradores [BDSV12], el modelo de tensión musical de Margulis [Mar05], la teoría de la expectativa de Huron [Hur06] o los modelos probabilísticos de Temperley [Tem10].

La teoría de Meyer contenía varios elementos que apuntaban hacia el uso de la entropía. Por un lado, al hablar de la estimación de la probabilidad de la continuación del discurso musical ya estaba sentando las bases para los modelos probabilísticos. Por otro lado, ¿cómo se estiman esas probabilidades? El oyente de una pieza musical va registrando los eventos musicales que oye y en función de ello y otros factores (familiaridad con el estilo, formación musical, conocimiento de la pieza en concreto) va construyendo un conjunto de probabilidades con que estima el próximo evento musical. Si el siguiente evento musical efectivamente confirma la estimación del oyente, la música producirá significado que si dicho evento rompe drásticamente su estimación. Dicho de otro modo, si la música es muy predecible, no tendrá interés musical para el oyente, mientras que si la música está llena de sorpresas, entonces sí generará mucho interés. A partir del trabajo de Meyer, muchos investigadores examinaron la cuestión de definir formalmente el significado musical a través de la entropía. Por orden cronológico, los esfuerzos más representativos se encuentran en los trabajos de Youngblood [You58], Cohen [Coh62], Knopoff y Hutchinson [KH83], Snyder [Sny90], Margulis [Mar05], Cox [Cox10], Laney y sus colaboradores [LSC15] y Febres y Jaffe [FJ17]. En efecto, la entropía es una medida de la cantidad de información contenida en la distribución de una variable aleatoria (véase [Góm16] para un repaso de estos conceptos). Cuanto más incertidumbre hay sobre los valores que toma la variable aleatoria, mayor es su entropía. Por otro lado, se puede interpretar que una pieza musical es más compleja cuanto más impredecible sea. Y entonces surge la deseada relación entre complejidad musical/significado musical y entropía. Sin embargo, Margulis [MB08], en un trabajo de 2008, llevó a cabo un análisis sistemático de la entropía como herramienta analítica y apunto a tres grandes problemas. El primero es de tipo epistemológico y es cómo hacer preguntas que sean relevantes musicalmente dentro del marco de la teoría de la información. La segunda es cómo recoger datos musicales que necesitan los modelos computacionales de la teoría de la información. La tercera es cómo determinar la unidad básica de análisis (la altura de sonido, el ritmo, las frases, los motivos o una combinación de ellos) que proporcione resultados válidos. Una de las principales virtudes de la entropía es que se puede concebir como una medida de la complejidad con que los elementos de una pieza están integrados entre sí. Sin embargo, no está tan claro cómo relacionar la entropía con la percepción del oyente de los elementos musicales. Varios autores [SJAN99Mar14] han probado que los humanos pueden tomar propiedades estadísticas complejas cuando están escuchando música. Como Margulis ha escrito con elocuencia, “escuchar música es al mismo tiempo aprender a escuchar música”. Esto puede justificar el uso de la entropía, pero sigue quedando la cuestión de si la entropía se calcula sobre las mismas estadísticas que las que extrae un oyente humano.

Otra cuestión fundamental es que la entropía no tiene en cuenta el significado intrínseco de los símbolos musicales, sino únicamente su frecuencia. Tampoco tiene en cuenta el orden en que estos aparecen y es razonable pensar que dicho orden tiene cierta importancia. Como veremos en las siguientes entregas de esta serie, los investigadores han hecho un gran esfuerzo por aplicar la entropía al análisis musical de manera que se superen estos obstáculos y se obtengan resultados que tengan relevancia en la explicación del fenómeno musical.

Bibliografía

[AaQ17] Pedro Atã and João Queiroz. Semiotic niche construction in musical meaning. Recherches sémiotiques / Semiotic Inquiry, 37(1-2):75–87, 2017.

[BDSV12] Frédéric Bimbot, Emmanuel Deruty, Gabriel Sargent, and Emmanuel Vincent. Semiotic structure labeling of music pieces: concepts, methods and annotation conventions. In ISMIR (International Symposium on Music Information Retrieval), Curitiba, Brazil, October 2012.

[Bro00] Candace Brower. A cognitive theory of musical meaning. Journal of Music Theory, 44(2):323–379, 2000.

[Chu19] Andrew J. Chung. What is musical meaning? theorizing music as performative utterance. Music Theory Online, 25(1), 05 2019.

[Coh62] J. E. Cohen. Information theory and music. Behavioral Science, 7(2):137–163, 1962.

[Coo01] Nicholas. Cook. Theorizing musical meaning. Music Theory Spectrum, 23(2):170–195, 2001.

[Cox10] G. Cox. On the relationship between entropy and meaning in music: An exploration with recurrent neural networks. In Proceeding Annual Meeting of the Cognitive Science Society, Portland, USA, August 2010.

[FJ17] G. Febres and K. Jaffe. Music viewed by its entropy content: A novel window for comparative analysis. PLoS ONE, 12(10):1–30, 2017.

[Góm16] P. Gómez. Música y Probabilidad (I), noviembre de 2016.

[Hur06] David Huron. Sweet Anticipation. MIT Press Books, Massachusetts, 2006.

[KH83] L. Knopoff and W. Hutchinson. Entropy as a measure of style: The influence of sample length. Journal of Music Theory, 27(1):75–97, 1983.

[LJ83] F. Lerdahl and R. Jackendoff. A Generative Theory of Tonal Music. MIT Press, Cambridge, Massachussetts, 1983.

[LSC15] Robin Laney, Robert Samuels, and Emilie Capulet. Cross entropy as a measure of musical contrast. In Tom Collins, David Meredith, and Anja Volk, editors, Mathematics and Computation in Music, volume 9110 of Lecture Notes in Computer Science, pages 193–198. Springer, Cham, Switzerland, 2015.

[Mar05] Elizabeth H. Margulis. A model of melodic expectation. Music Perception: An Interdisciplinary Journal, 22(4):663–714, 2005.

[Mar14] Elizabeth H. Margulis. On repeat: how the music plays the mind. Oxford University Press, New York, 2014.

[MB08] Elizabeth H. Margulis and Andrew P. Beatty. Musical style psychoaesthetics and prospects for entropy as an analytic tool. Computer Music Journal, 32(4):64–78, 2008.

[Mey56] Leonard Meyer. Emotion and Meaning in Music. University of Chicago Press, Chicago, 1956.

[Mey57] Leonard Meyer. Meaning in music and information theory. Journal of Aesthetics & Art Criticism, 15:412–424, 1957.

[Nar90] E. Narmour. The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model. University of Chicago Press, Chicago, 1990.

[Sha10] C. E. Shannon. A Mathematical Theory of Communication. Bell System Technical Journal, 27:379–423, 623–656, julio, octubre 2010.

[SJAN99] J. R. Saffran, E. K. Johnson, R. N. Aslin, and E. L. Newport. Statistical learning of tone sequences by human infants and adults. Cognition, 70:27–52, 1999.

[Sny90] J. L. Snyder. Entropy as a measure of musical style: The influence of a priori assumptions. Music Theory Spectrum, 12(1):121–160, 1990.

[Tem10] D. Temperley. Music and Probability. MIT Press Ltd, 2010.

[Wik] Wikipedia. Entropy.

[You58] J. E Youngblood. Style as Information. Journal of Music Theory, 2(1):24–35, 1958.

 
Volver