Pitágoras (Siglo VI a.C.) - Página 7 |
Escrito por Pedro Miguel González Urbaneja (IES Sant Josep de Calassanç, Barcelona) | ||||||||||||
Página 7 de 10
El descubrimiento de las magnitudes inconmensurables La grandeza sublime del Teorema de Pitágoras y la mágica belleza del Pentagrama místico pitagórico fueron dos caballos de Troya para la Geometría griega, porque llevaban en su interior el germen de la profunda crisis de la secta pitagórica donde aparecieron. Los Pitagóricos, que, como filósofos presocráticos, habían considerado como núcleo dogmático de su Filosofía que «los números son la esencia del universo», encuentran que las consecuencias de su Teorema atentan contra los fundamentos de su doctrina, que les había llevado a establecer un paralelismo entre el concepto numérico y la representación geométrica. En efecto, el cuadrado que es una de las figuras geométricas más simples, proporciona un terrible ente geométrico, la diagonal, que no es conmensurable con el lado. Lo mismo sucede entre la diagonal y el lado del pentágono. La creencia de que los números podían medirlo todo era una ilusión. Así quedaba eliminada de la Geometría la posibilidad de medir siempre con exactitud. Se había descubierto la magnitud inconmensurable, lo irracional –no expresable mediante razones–, «el alogon», que provocaría una crisis sin precedentes en la Historia de la Matemática. La sacudida que la aparición del nuevo ente provocó en la Matemática griega puede calibrarse por la leyenda apocalíptica que relata un viejo escolio (atribuido a Proclo) del Libro X de Los Elementos de Euclides:
En el mismo tono apocalíptico escribe Jámblico (Vida Pitagórica. XXXIV, 246–247, p.141):
Las circunstancias concretas del primer reconocimiento de inconmensurables son tan desconocidas como la fecha en que tuvo lugar. Aunque Proclo –en sus Comentarios–, lo atribuye al propio Pitágoras cuando escribe que este filósofo «descubrióla dificultad de los números irracionales» suele admitirse que fue hacia el 480 a.C. por Hipasos de Metaponto. El descubrimiento pudo tener lugar al intentar reiteradamente de forma empírica encontrar una unidad que permitiera medir, de manera exacta, simultáneamente la diagonal y el lado del cuadrado o bien la diagonal y el lado de un pentágono regular. El descubrimiento de la inconmensurabilidad marca un hito en la Historia de la Geometría, porque no es algo empírico, sino puramente teórico. Con el descubrimiento de los inconmensurables quedaban afectadas y debían ser reconstruidas todas las pruebas pitagóricas de los teoremas en los que haya que comparar razones de magnitudes geométricas. Se explica, pues, el consiguiente secretismo de los pitagóricos sobre la cuestión irracional y la leyenda del castigo por su divulgación. Leyendas y conjeturas aparte, se comprende que el descubrimiento de las magnitudes inconmensurables produjera un escándalo lógico en todo el ámbito pitagórico, ya que exigía una revisión a fondo de los fundamentos de su Matemática y su Filosofía, pero fue no sólo la cuna de la Geometría griega sino uno de los componentes esenciales del milagro griego en Matemáticas. La tempestad provocada por el descubrimiento pitagórico de los irracionales precipitó la primera crisis de fundamentos en la Historia de la Matemática, propiciando «el horror al infinito», que caracteriza casi toda la Matemática griega posterior. Como reacción al lenguaje ingenuo de los pitagóricos, mezcla de brillantes ideas matemáticas, actitudes místicas y aforismos religiosos, se impondrá el severo rigor de Los Elementos de Euclides. Pero el desarrollo de La Geometría al margen de la Aritmética, la ausencia de un Álgebra simbólica y la conversión de toda la Matemática en Geometría, con un estilo sintético de exposición que oculta la vía heurística del descubrimiento, fue el efecto más inmediato. La Cosmogonía poliédrica pitagórica Diversos historiadores de las Matemáticas admiten que las antiguas civilizaciones egipcias y babilónicas tenían conocimiento del cubo, tetraedro y octaedro y que este saber se trasmitiría a Grecia a través de los viajes de Tales y Pitágoras. Proclo en sus Comentarios al Libro I de los Elementos de Euclides atribuye a Pitágoras la construcciónde «las figuras cósmicas», nombre relacionado con su uso en la elaboración de una cosmogonía pitagórica que asociaría los cuatro elementos primarios –fuego, tierra, aire y agua–, con los cuatro sólidos– tetraedro, cubo, octaedro e icosaedro–, respectivamente, mientras el dodecaedro como símbolo general del universo se relacionaba de forma mística con el Cosmos, representación del universo armónico ordenado por el número. Aecio (basándose en Teofrastro) atribuye a Pitágoras la cosmogonía descrita con estas palabras (W.K.C.Guthrie. Historia de la Filosofía griega. Vol.1. Gredos, Madrid,1999, p.256):
También Filolao y en parte Simplicio aseguran lo mismo, mientras que algunos escoliastas del Libro XIII de Los Elementos de Euclides aseguran que los cinco cuerpos platónicos no tuvieron su origen en Platón, sino que el cubo, la pirámide [el tetraedro] y el dodecaedro derivaban de los pitagóricos y las otras dos formas de Teeteto. Los pitagóricos estaban fascinados por los sólidos regulares, sobre todo por el dodecaedro, debido a la presencia del emblemático pentágono en sus caras, generador al trazar las diagonales de la estrella pentagonal, llamada Pentagrama místico, que era el símbolo de identificación de los miembros de la secta pitagórica y responsable, junto con el Teorema de Pitágoras, de la aparición de la inconmensurabilidad. La construcción del dodecaedro era un secreto guardado celosamente, hasta el punto de que se fue fraguando una leyenda sobre el terrible fin de quien osó divulgar sus misterios, relatada entre otros autores por Jámblico (Vida Pitagórica, XVIII.88, p.97):
Y también, más adelante (en Vida Pitagórica, XXXIV, 247, p.141), Jámblico escribe:
Este texto recuerda la descripción apocalíptica de muchos escritores acerca de la maldición que cayó sobre Hipasos de Metaponto por haber revelado la aparición de lo inconmensurable. La analogía entre ambas leyendas avalaría la tesis de que el advenimiento de la inconmensurabilidad habría tenido lugar a través del pentágono de las caras del dodecaedro. Aunque lo aseguren las fuentes mencionadas, la crítica histórica considera improbable que Pitágoras hubiera planteado la cosmogonía descrita, ya que, por una parte, fue Empédocles de Agrigento el primero que distinguió explícitamente los cuatro elementos primarios –fuego, tierra, aire y agua–, y por otra, según mencionan diversas fuentes, los primeros pitagóricos habrían reconocido sólo el tetraedro, el cubo y el dodecaedro, atribuyéndose el octaedro y el icosaedro al brillante matemático de la Academia, Teeteto, que realizó importantes aportaciones sobre los inconmensurables y que fue honrado por su amigo Platón con el nombre de uno de sus Diálogos (142a–210d).
|
© Real Sociedad Matemática Española. Aviso legal. Desarrollo web |