DivulgaMAT
Inicio - DivulgaMAT Facebook - DivulgaMAT Twitter - DivulgaMAT

Poisson, Siméon Denis (1781-1840) - Página 2
PDF Imprimir Correo electrónico
Escrito por Javier Escribano (Instituto Valle del Cidacos, Calahorra)   
Índice del artículo
Poisson, Siméon Denis (1781-1840)
Página 2
Página 3
Página 4
Todas las páginas
En 1798 consigue ingresar con el número uno en la Escuela Politécnica y dos años más tarde publica sus primeras memorias en el Recueil des savants étrangers, un honor excepcional para un joven de 18 años. Sus rápidos progresos llaman la atención de Laplace y Lagrange. En éstos, encontró Poisson la fuente para aprender los conceptos matemáticos y el apoyo para progresar profesionalmente, y con ellos compartió los principios de la matemática de la Revolución:
  • La prioridad de los resultados prácticos sobre el rigorprocedimental.
  • El interés por la matemática aplicada, la mecánica y la física.
  • La preocupación por la enseñanza de la matemática a través de la elaboración de excelentes manuales.
  • La consideración social de las matemáticas como instrumento necesario para el progreso y el bienestar de los ciudadanos: “el progreso y el perfeccionamiento de las matemáticas –decía Napoleón- están íntimamente ligados a la prosperidad del Estado”
Dos años después de su ingreso como alumno, en 1800, Poisson es nombrado repetidor, dos años más tarde profesor suplente y en 1806 ya es profesor titular de la Escuela Politécnica en sustitución de otro grande de la física y la matemática: Jean-Baptiste Joseph Fourier.

ImageComienza así una fulgurante carrera jalonada por reconocimientos y honores. En 1808 ingresa como astrónomo en el Bureau des Longitudes y un año más tarde es nombrado catedrático de mecánica racional de la Facultad de Ciencias de la Sorbona. En 1812 ingresa en la Academia de Ciencias, en 1820 en el Consejo Real de Instrucción Pública, desde donde dirige la enseñanza de las matemáticas en todos los colegios de Francia. En 1827 es nombrado geómetra del Bureau des Longitudes en sustitución de Laplace y en 1837 el rey Luís Felipe de Orleans le nombra par de Francia como representante de la ciencia francesa.

Poisson fue considerado por sus contemporáneos un gran científico y un excelente profesor pero también una persona obstinada y con excesivo amor propio, dado a discusiones y controversias. Entre ellas, podemos citar (Pajares, 1955) la mantenida con Laplace sobre la teoría de la capilaridad; con Fourier sobre la teoría del calor y con Fresnel, sobre la teoría ondulatoria. O el rechazo, junto con Lacroix, de la memoria presentada por Galois sobre las condiciones “para que una ecuación de grado primo sea resoluble por radicales” que tanta trascendencia ha tenido en el desarrollo de la matemática. 

Su obra
Poisson dedicó su vida a la investigación y enseñanza de las matemáticas. De su mano surgieron numerosa memorias (sus biógrafos las cifran entre 300 y 400) con aportaciones originales en muchos campos. Y una serie de tratados con los que pretendió formar una gran obra de física matemática que no llegó a concluir.
Image
  • Sur les inégalités des moyens mouvements de rotation de la terre (1808)
  • Traité de mécanique (1811-1833)
  • Sur la distribution de la l’électricité à la surface des corps conducteurs (1812)
  • Remarques sur une équation qui se présente dans la théorie des attractions des sphéroïdes (1813)
  • Mémorie sur la théorie des ondes (1816)
  • Mémorie sur la Manière d’exprimer les Fonctions par des Séries de quantités périodiques (1820)
  • Sur la chaleur des gaz et des vapeurs (1823)
  • Mémoire sur la théorie du magnétisme (1824)
  • Théorie nouvelle de l'action capillaire (1831)
  • Formules relatives aux effets du tir d'un canon sur les différentes parties de son affût (1826,1838)
  • Théorie mathématique de la chaleur (1835)
  • Recherches sur la probabilité des jugements en matières criminelles et matière civile (1837)
  • Recherches sur le mouvement des projectiles dans l'air, en ayant égard à leur figure et leur rotation, et à l'influence du mouvement diurne de la terre (1839)
Electricidad y magnetismo

Los fenómenos eléctricos y magnéticos comenzaron a estudiarse a finales del siglo XVIII, en 1785 el físico francés Charles de Coulomb confirmó que la fuerza de atracción o de repulsión eléctrica (y también entre polos magnéticos, como él mismo comprobó) es directamente proporcional al producto de las cargas e inversamente proporcional al cuadrado de la distancia que las separa. Con ello, la electrostática y la magnetostática adquirían el rango de ciencias matemáticas según el modelo newtoniano.

En 1820, Oersted descubrió en Copenhague que la corriente eléctrica producía la declinación de la aguja de una brújula. De esta forma podían unirse la electricidad y el magnetismo en una teoría única susceptible de abordarse con métodos matemáticos. Nace así una nueva rama de la “matemática aplicada” de la que Poisson fue uno de sus principales fundadores.

Poisson clasificó los cuerpos en conductores y aislantes; y definió la electricidad como un fluido donde los elementos semejantes se repelen y los elementos contrarios se atraen.

Amplió y extendió los trabajos realizados por Euler, Lagrange y Laplace sobre el potencial gravitatorio. En 1785 Laplace había establecido que la variación de potencial V(x,y,z) en cualquier punto, ya sea interior o exterior al cuerpo que ejerce la atracción gravitacional, satisface la ecuación que lleva su nombre:
Image
Poisson (1812) comprobó que esta ecuación no era correcta para los puntos (x,y,z) situados en el interior del cuerpo atrayente, la reformuló del siguiente modo (ecuación de Poisson):
Image, donde p es la función de densidad del cuerpo atrayente y la extendió al campo eléctrico. En este mismo trabajo, Poisson consiguió resolver un problema cuya solución teórica había buscado ya Coulomb: el de la distribución de electricidad en un sistema de dos esferas.

En magnetismo, se preocupó de cuestiones específicas, tales como la influencia de las masas de hierro de los buques sobre la brújula, y de buscar una teoría general que presentaría en 1824. En esta memoria extiende su ecuación al campo magnético y establece la ecuación general del potencial magnético como suma de dos integrales correspondientes a la distribución superficial y espacial del magnetismo, respectivamente.
 

© Real Sociedad Matemática Española. Aviso legal. Desarrollo web